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ABSTRACT

We outline a planned experiment to investigate if personal data (e.g.,

demographics and behavioral patterns) can be used to selectively

expose individuals to disinformation such that an adversary can

spread disinformation more efficiently compared to broadcasting

the same information to everyone. This mechanism, if effective,

will have devastating consequences as modern technologies collect

and infer a plethora of private data that can be abused to target

with disinformation. We believe this research will inform designing

policy and regulation for online platforms.

CCS CONCEPTS

· Security and privacy→ Social aspects of security and pri-

vacy; Usability in security and privacy.

1 PROBLEM SPACE

Technologies collect huge amount of personal and potentially sen-

sitive data, including demographic, bio-metric, behavioral patterns,

and (dis)interests. These data may be collected, shared, or used with

or without people’s consent [1, 5, 11] and digitally stored, making

them permanent, replicable, and re-shareable [23], heightening the

concern regarding numerous privacy risks, such as data breaches,

hacking, identity theft, and other forms of unauthorized access (e.g.,

[7, 15, 25, 30, 31, 37]). We plan to investigate whether personal in-

formation can be abused to propagate disinformation, by exposing

individuals to specific disinformation based on their demographic

attributes, personality traits, behavioral patterns, physiological and

emotional states, or other properties. Thus, our research is at the

intersection of privacy and disinformation, where we aim to in-

vestigate if private data can be used to łtargetž individuals with

disinformation to elicit desired outcomes, such as increasing the

likelihood of believing the information or further propagating it to

others, or both.

We hypothesize that an individual, when targeted with disin-

formation based on some property p (e.g., gender, socio-economic

status, interests, personality traits, etc.), will react differently com-

pared to other people who do not possess property p. For example,

health-conscious individuals may react differently to health-related

disinformation than individuals with less interest in such news.

The reaction can be either positively or negatively correlated with

the level of interest (i.e., a higher or lower level of trust in or en-

gagement with the provided information). We aim to investigate

the magnitude and direction of change in reaction from individu-

als targeted with disinformation compared to showing the same

information to a random set of people.

Prior research has reported that certain properties, e.g. age, gen-

der, emotional intelligence, etc., are associated with a higher level

of trust in fake news. For instance, individuals with low emotional

intelligence are more susceptible to false information than indi-

viduals with high emotional intelligence [29]. Additionally, older

people were found to be more likely to believe false information

than younger people [4, 14, 27]. Previous research also found a pos-

itive correlation between education level and false news acceptance

[8, 27]. Thus, it is likely that by serving different disinformation to

different groups of the population that possess these properties, an

adversary will be able to propagate disinformation more efficiently

than by broadcasting the same message to the whole population.

Moreover, the advancement of Extended Reality, such as Aug-

mented Reality (AR) [6], Virtual Reality (VR) [43] technologies are

closing the gap between the physical and virtual worlds [44]. Even

in the Metaverse [28], interpersonal engagement is more intense

and scalable than in traditional social media environments [38].

Such interactions may allow adversaries to exploit an unprece-

dented amount of personal information and use them to target

people with disinformation.

Conversely, in some cases, targeting may result in a lower level

of trust in disinformation. E.g., if someone is targeted based on

their interests or hobbies, they might be less likely to believe in

that information because of their prior knowledge on that topic

of interest [33]. Yet, a vast amount of research suggests that the

exact opposite might be true. Due to a processing advantage of

familiar information, familiarity with the topic may lead to the im-

pression that the information is true [12, 13]. However, identifying

characteristics of people who are resilient to targeted disinforma-

tion will benefit future research in crowdsourced fact-checking (e.g.,

by directing potential disinformation to fact-checkers with these

characteristics).
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For the cases where targeting leads to a higher level of trust

or engagement, the consequences can be disastrous. Since indi-

viduals’ preexisting ideas and interests are positively correlated

with their acceptance of false information [34], targeting may even

create opportunities to mislead sub-populations who were previ-

ously believed to be resilient to disinformation, e.g., highly educated

individuals [8] and young adult [4], if they find the served infor-

mation aligned with their personal characteristics and interests.

For example, young adults who are concerned about health, cli-

mate, etc. can be misled by deceptive articles [10, 36], especially

if they are emotionally invested in that topic [22]. Furthermore,

platform users build networks with others who have similar in-

terests [21] and share information they find interesting with their

connections [8, 32], massively scaling up the number of affected

people who can further propagate the information at no cost to the

adversary.

Additionally, posts generated by Artificial Intelligence (AI) can

be highly emotional [9] and can be used to target individuals with

low emotional intelligence [29] that can be inferred from breached

data [18, 24], sensor data [19], or online personality tests [5]. More-

over, AI is currently used for personalized recommendations on

digital platforms, healthcare, and marketing, which depend heavily

on user characteristics, behaviors, demographics, and preferences

data [16, 20, 35]. Since AI technologies such as DeepFake [39], bot-

net [2], ChatGPT [40] etc., are cheap, fast, scalable, and able to

create personalized content [17], adversaries may soon be capable

of generating targeted disinformation automatically and faster than

a human being.

2 EXPERIMENTAL DESIGN

As a first step towards understanding the effect of targeted disin-

formation, we designed a study where we target based on people’s

demographic attributes and topical interests (e.g., healthy diet, cook-

ing, celebrity news, gardening, movie, books, etc.). Each participant

will read 20 recently published news articles manually collected

from high [26] and low-credible [42] news sources selected depend-

ing on NewsGuard’s reliability score [41]. Also, the low-credible

news sources selected for this study tend to publish false news [3].

However, which news item stems from which source will not be

revealed to participants. They will be asked whether or not they be-

lieve the news to be true. Suppose we find that people believe false

information that matches their self-reported interests more than

false information that doesn’t match their self-reported interests.

In that case, we can infer that targeted disinformation influences

people more than any non-targeted misinformation. In particular,

if targeted disinformation turns out to be effective in propagat-

ing disinformation, this finding will strengthen the case for better

protection of consumer data with regulations as well as platform

design choices. As such, this study will inform the design of online

platforms and policies regarding the collection and use of personal

data.
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